Low PT Analysis Update Lina Galtieri(LBNL), Corrinne Mills (Edinburgh) for the Lowpt/W+jets group #### Outline - New baseline for the DF channels Control Regions Results - Comparing Results in different conditions - Contribution to the H --> WW sample - Normalized SS-CR for Low and All Pt's Control Regions plots for Low and All Pt's SS validation plots - Low PT Signal Region plots - Summary of observations ### Analysis Conditions - Analysis code revision 570789, Nov 15. Ntuples tag-02-25 - New baseline: see Jonathan talk at the ggF optimization meeting: Nov 8 WW CR cuts: 55 < Mfl < 110 GeV, DF I < 2.6, PTII > 15 GeV Change METRel cut to METTrackHWW-CL MT calculated with METTrackHWW-CL Njet=0 $E_{T,miss}^{Track-Cl}$ > 20. Njet=1 $E_{T,miss}^{Track-Cl}$ > 10. Max (MWT) > 50 Njet=0 $E_{T,miss}^{Track-Cl}$ > 20. Njet=1 $E_{T,miss}^{Track-Cl}$ > 10. Max (MWT) > 50 - Improved lepton selections: isolation cuts, VTLH W+jets V8.2 (see Keisuke's talk) - Content Cutflows for (2012 only) all DF channels em and me. Both 0-jet, 1jet channels} Missing latest improvements: Z tau tau CR's and WW MC changes (had problems with the latest CAF code). Only DF analysis shown here: SF, VBF, 2011 analyses are in progress. #### Normalization Factors # Control Region Strategy | WW | | 0 jet | | 1 jet | | | | |----------------------------------|--------|-------------------|-----------------|--------|----------------|---------------|--| | | purity | N _{data} | NF | purity | $N_{\rm data}$ | NF | | | $10 < p_T^{\text{sublead}} < 15$ | 31% | 208 | 0.84 ± 0.25 | 23% | 92 | 1.15 ± 0.48 | | | $15 < p_T^{\text{sublead}} < 20$ | 50% | 381 | 1.52 ± 0.14 | 32% | 165 | 1.11 ± 0.27 | | | $p_T^{\text{sublead}} > 20$ | 74% | 2273 | 1.15 ± 0.03 | 41% | 2934 | 1.09 ± 0.05 | | | top | | 0 jet* | | 1 jet | | | | |----------------------------------|--------|---------------|-----------------|--------|----------------|-----------------|--| | | purity | $N_{ m data}$ | NF | purity | $N_{\rm data}$ | NF | | | $10 < p_T^{\text{sublead}} < 15$ | 88% | 449 | 1.01 ± 0.12 | 84% | 340 | 0.97 ± 0.07 | | | $15 < p_T^{\text{sublead}} < 20$ | 85% | 1179 | 1.14 ± 0.09 | 90% | 714 | 1.04 ± 0.05 | | | $p_T^{\text{sublead}} > 20$ | 95% | 7789 | 0.97 ± 0.03 | 95% | 5250 | 0.96 ± 0.02 | | | $Z \rightarrow \tau \tau$ | | 0 jet | | l jet | | | | |----------------------------------|--------|-------------------|-----------------|--------|----------------|-----------------|--| | | purity | N _{data} | NF | purity | $N_{\rm data}$ | NF | | | $10 < p_T^{\text{sublead}} < 15$ | 90% | 2413 | 1.01 ± 0.03 | 86% | 1256 | 1.01 ± 0.04 | | | $15 < p_T^{\text{sublead}} < 20$ | 89% | 1457 | 0.97 ± 0.03 | 90% | 1489 | 1.05 ± 0.03 | | | $p_T^{\text{sublead}} > 20$ | 85% | 931 | 0.95 ± 0.05 | 88% | 2320 | 1.05 ± 0.03 | | - NFs consistent, but tend to be high for 15 < p_T^{sublead} < 20 - CR purity only depends strongly on p_T^{sublead} for WW - → Exclude 10 < p_T^{sublead} < 15 from WW CR</p> 22 Nov. 2013 c. mills (Edinburgh) 11 ### Background in different PT bins ## 0-jet Blinded SR (after $\Delta \varphi(ll) < 1.8$) ## Low PT: tag-02-23 and tag-02-25 NJ=0 · Comparison, after the DF_{II} cut, of many steps in the analysis | Low PT | Njet=0 | | | | | | | | | |-------------------------|----------------|----------------------|----------------------|--------------------|-----------------------|------------------------|----------------------|-----------------|-------| | tag-02-24 | Signal | WW | nonWW | tt | Sing. Top | Z+jets | W+jets | All Bkg. | S/B | | eµ . | 20.5 ± 0.5 | 91.1 ± 2.6 | 61.3 ± 2.7 | 8.6 ± 1.0 | 5.2 ± 0.3 | 0.9 ± 0.4 | 64.2 ± 2.9 | 231.3 ± 4.8 | 0.089 | | μе | 13.6 ± 0.4 | 64.1 ± 2.2 | 70.3 ± 3.1 | 5.1 ± 0.9 | 3.8 ± 0.3 | 0.1 ± 0.1 | 82.8 ± 1.1 | 226.2 ± 4.0 | 0.060 | | еµ + µе
F(back.) (%) | 34.1 ± 0.7 | 155.2 ± 3.4
33.8% | 131.6 ± 4.1
28.6% | 13.7 ± 1.3
3.0% | 9.0 ± 0.4
2.0% | 1.0 ± 0.4
0.2% | 147.0 ± 3.2
32.0% | 457.5 ± 6.3 | 0.075 | | Low PT | Njet=0 | V8.1 | | | | | | | | | tag-02-25 | Signal | WW | nonWW | tt | Sing Top | Z+jets | W +jets | All Bkg. | S/B | | еµ | 23.9 ± 0.6 | 103.2 ± 2.7 | 72.6 ± 2.8 | 10.8 ± 1.2 | 6.7 ± 0.4 | 2.5 ± 1.3 | 85.6 ± 3.3 | 282.5 ± 5.4 | 0.085 | | μе | 15.6 ± 0.4 | 74.2 ± 2.3 | 81.6 ± 3.3 | 7.0 ± 1.0 | 4.9 ± 0.3 | 7.7 ± 6.4 | 89.6 ± 1.1 | 264.9 ± 7.7 | 0.069 | | eμ + μe
F(back.) (%) | 39.8 ± 0.7 | 177.4 ± 3.5
32.4% | 155.2 ± 4.3
28.4% | 17.8 ± 1.5
3.3% | 11.6 ± 0.5
2.1% | 10.2 ± 6.6
1.9% | 175.1 ± 3.5
32.0% | 547.4 ± 9.4 | 0.073 | | Low PT | Njet=0 | V8.2 | | | | | | | | | tag-02-25 | Signal | WW | nonWW | tt | Sing Top | Z+jets | W+jets | All Bkg. | S/B | | eµ | 23.9 ± 0.6 | 106.9 ± 2.8 | 77.0 ± 2.9 | 9.8 ± 1.1 | 6.1 ± 0.3 | 2.5 ± 1.3 | 81.6 ± 3.2 | 284.0 ± 5.4 | 0.085 | | μе | 15.9 ± 0.4 | 76.8 ± 2.3 | 85.4 ± 3.4 | 6.4 ± 0.9 | 4.4 ± 0.3 | 7.7 ± 6.4 | 82.5 ± 1.2 | 263.2 ± 7.8 | 0.078 | | eμ + μe
F(back.) (%) | 39.8 ± 0.7 | 183.6 ± 3.6
33.6% | 162.4 ± 4.5
29.7% | 16.2 ± 1.4
3.0% | 10.5 ± 0.4
1.9% | 10.2 ± 6.6
1.9% | 164.1 ± 3.5
30.0% | 547.1 ± 9.5 | 0.072 | W+jets FF's change > LH added - The FF changes reduced the μe background in W+jets, but analysis changes increased both signal and backgrounds - The LH change reduced the overall background by ~5% but the TrackMET increased both signal and backgrounds ### Low PT tag-03-23 to 02-25 Njet=1 • For Nj=1 after the $\Delta\Phi_{||}$ cut, we see a different pattern | Low PT | Njet=1 | 34 | | | | | | | | | |------------------------|----------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|-----------------|-------|-----------| | tag-02-24 | Signal | WW | nonWW | tī | Sing Top | Z+jets | W+jets | All Bkg. | S/B | | | eµ | 8.5 ± 0.3 | 28.1 ± 1.4 | 11.0 ± 1.2 | 21.1 ± 1.6 | 6.9 ± 0.5 | 13.6 ± 1.3 | 31.7 ± 2.0 | 112.3 ± 3.4 | 0.075 | | | με | 5.2 ± 0.2 | 17.3 ± 1.1 | 13.3 ± 1.4 | 13.6 ± 1.3 | 4.7 ± 0.4 | 6.9 ± 0.9 | 20.5 ± 0.8 | 76.2 ± 2.5 | 0.068 | \M/+ia+a | | $e\mu + \mu e$ | 13.6 ± 0.4 | 45.3 ± 1.7 | 24.3 ± 1.8 | 34.6 ± 2.1 | 11.6 ± 0.6 | 20.5 ± 1.5 | 52.2 ± 2.2 | 188.5 ± 4.3 | 0.072 | W+jets | | F(back.)(%) | | 24.0% | 12.9% | 18.4% | 6.2% | 10.9% | 27.7% | | | FF's | | Low PT | Njet=1 | V8.1 | | | | | , and the second | | |) 1 3 | | tag-02-25 | Signal | WW | nonWW | tt | Sing Top | Z+jets | W+jets | All Bkg. | S/B | changed | | ен | 10.3 ± 0.4 | 31.6 ± 1.4 | 12.3 ± 1.1 | 25.6 ± 1.8 | 8.8 ± 0.5 | 7.3 ± 1.2 | 37.0 ± 2.1 | 122.6 ± 3.6 | 0.084 | criarigea | | με | 6.6 ± 0.3 | 20.3 ± 1.1 | 14.9 ± 1.4 | 17.1 ± 1.5 | 6.6 ± 0.5 | 3.6 ± 0.8 | 24.7 ± 0.9 | 87.2 ± 2.7 | 0.076 | , | | $e\mu + \mu e$ | 16.9 ± 0.5 | 51.8 ± 1.8 | 27.2 ± 1.8 | 42.7 ± 2.4 | 15.4 ± 0.7 | 11.0 ± 1.4 | 61.7 ± 2.3 | 209.7 ± 4.5 | 0.080 | | | F(back.)(%) | | 24.7% | 12.9% | 20.3% | 7.4% | 5.2% | 29.4% | | | | | Low PT | Njet=1 | V8.2 | | | | | | | | ; LH | | tag-02-25 | Signal | WW | nonWW | tt | Sing Top | Z+jets | W+jets | All Bkg. | S/B | added | | еµ | 10.3 ± 0.4 | 33.1 ± 1.5 | 16.2 ± 1.5 | 23.8 ± 1.7 | 8.2 ± 0.5 | 7.6 ± 1.2 | 32.4 ± 1.2 | 121.4 ± 3.6 | 0.085 | added | | μе | 6.6 ± 0.3 | 21.3 ± 1.2 | 19.7 ± 1.8 | 15.9 ± 1.4 | 6.1 ± 1.4 | 3.8 ± 0.8 | 22.5 ± 0.9 | 89.2 ± 2.9 | 0.074 | | | eμ + μe
F(back.)(%) | 16.9 ± 0.5 | 54.4 ± 1.9
25.8% | 35.9 ± 2.3
17.0% | 39.7 ± 2.2
18.8% | 14.4 ± 0.7
6.8% | 11.4 ± 1.5
5.3% | 54.9 ± 2.3
26.1% | 210.6 ± 2.3 | 0.080 | | - FF's change reduced the W+jets somewhat, but also here other changes increased both signal and background - The TrackMET change improved the signal as well as the S/B - The LH affected the WW background. #### Low PT Statistics | Sample Njets=0,1 | Signal | | Background | | S/B | | |------------------|--------|-------|------------|-------|-------|-------| | | еμ | μе | еμ | μе | еμ | μе | | All PT bins | 158.8 | 89.4 | 1701 | 1510 | 0.093 | 0.059 | | Low PT | 34.2 | 22.6 | 405 | 352 | 0.084 | 0.064 | | Low PT fraction | 21.5% | 25.3% | 23.8% | 23.3% | | | - Low PT contributes 21.5% of the events and 23.8% of the background in the $e\mu$ channel - It contributes 25.3% of the events and 23.3% of the background in the μe channel - 5/B are comparable to the All Pt bins samples - · Only the stat analysis can tell us what the real contribution is ### Comments on cutflows and plots - Recent efforts have improved the low PT sample. - For Njet=1 we have: background is down by 6.6%. - Signal is up by 22%. S/B is increased by 14% - Most important issue is related to the systematic uncertainties that will enter in the final fit. The W+jets background is about 30% of the total, but it has the largest systematics. Work on this is still going on. - Will show a few plots here. A more complete set will be posted on share point - · Look at SSCR plots first, CR next, SR at the end #### Normalized SS-CR, All PT : $\Delta \varphi(\ell \ell)$, MW_T em: still a bit underestimated μe: clear improvement is seen #### Normalized SS-CR, All PT: M_{ll} , M_T - All PT, Normalized SS-CR Njet=0: M_{ll} (top), M_T (bottom) - From left: $e\mu$, μe , $e\mu + \mu e$ Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis (6/23) #### Normalized SS-CR, All PT: M_{ll} , M_T , Njet=1 - All PT, Normalized SS-CR Njet=1: M_{ll} (top), M_T (bottom) - From left: $e\mu$, μe , $e\mu + \mu e$ Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis -1 (8/23) #### Normalized SS-CR, Low PT: M_{ll} , M_T , Njet=1 - Low PT, Normalized SS-CR Njet=1: M_{ll} (top), M_T (bottom) - From left: $e\mu$, μe , $e\mu + \mu e$ Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis -1 (9/23) #### All PT, WW 1-jet CR: $\Delta \varphi(\ell \ell)$ and M_T - ALL PT, Njets = 1, WW CR: $\Delta \varphi(\ell \ell)$ (top), M_T (bottom). - From left: $e\mu$, μe , $e\mu + \mu e$ Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis -1 (12/23) #### $\Delta\varphi(\ell\ell)$ and M_T in WW 0 jets CR. ALL PT - Low PT, Njet=0, WW CR: $\Delta \varphi(\ell \ell)$ (top), M_T (bottom). - From left: $e\mu$, μe , $e\mu + \mu e$ Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis -1 (13/23) #### SS after $\Delta \varphi(\ell \ell)$ cut: SubLeading Lepton P_T - SS after $\Delta \varphi(\ell \ell)$ cut: SubLeading Lepton P_T , Njet=0 (top), Njet=1 (bottom) - From left for: $e\mu$, μe , $e\mu + \mu e$. Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis (18/23) #### SS after $\Delta \varphi(\ell \ell)$ cut: $M_{\ell \ell}$ - SS $M_{\ell\ell}$ after $\Delta\varphi(\ell\ell)$ cut: Njet=0 (top), Njet=1 (bottom) - From left for: $e\mu$, μe , $e\mu + \mu e$ #### good Data/MC agreemen #### SS Plots after $\Delta \varphi(\ell \ell)$ cut: M_T - Top: SS M_T after $\Delta \varphi(\ell \ell)$ cut, Njet=0 for $e\mu$, μe , $e\mu + \mu e$ - Bottom: SS M_T after Δφ(ℓℓ) cut, Njet=1 for eµ, µe, eµ + µe #### Blinded SR, $\Delta \varphi(\ell\ell) < 1.8$: $\Delta \varphi(\ell\ell), M_T, M_{ll}$, Njet=0 - Blinded SR, Njet=0, $\Delta \varphi(\ell \ell) < 1.8$: $\Delta \varphi(\ell \ell)$, M_T , M_{ll} - Top: eμ. Bottom: μe Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis (21/23) ### Blinded SR, $\Delta \varphi(\ell\ell) < 1.8$: $\Delta \varphi(\ell\ell), M_T, M_{ll}$, Njet=1 - Njet=1 Blinded SR after Δφ(ℓℓ) < 1.8 cut: Δφ(ℓℓ), M_T, M_{ll}, - Top: eμ. Bottom: μe Dec 3, HSG3 Meeting Lina Galtieri Status of the Low PT Analysis -1 (22/23) ## Summary of Observations - Cutflows: low pT contribution is 22-25% of the signal, and 23% contribution to the background - The new lepton selection has decreased the em W+jets background by over 20%. However, with the new TrackMet baseline, we increase a bit this background. - SSCR plots of low pT events look good - Opposite sign CR's: data/MC for e μ and μ e channel look good - The eµ channel background has improved, but still is somewhat underestimated. For the µe channel Data/MC agreement has improved, but it is not perfect. #### What remains to be done - Finalize W+jet background: Fake factors, systematics etc (see Keysuke's talk) - Add Same Flavor Analysis - Add 2011 Data - Include low Pt in the VBF Analysis # Backup #### Normalization Factors Normalization Factors obtained with the new baseline except Recent changes to Z-> tt CR's and new WW MC HWWAnalysisCode 2012: Normalization factors: HWWAnalysisCode 2012: SSCR(em,me) 0 jet = 1.043 +/- 0.073 HWWAnalysisCode 2012: SSCR(em,me) 1jet = 1.061 +/- 0.132 HWWAnalysisCode 2012: Ztautau(em, me) 1 jet = 1.055 +/- 0.019 HWWAnalysisCode 2012: Ztautau(em, me) 0jet = 0.996 +/- 0.020 HWWAnalysisCode 2012: Top(em,me) 0jet = 0.993 +/- 0.000 HWWAnalysisCode 2012: Top(em,me) 1jet = 0.968 +/- 0.014 HWWAnalysisCode 2012: Top(em,me) incl = 1.001 +/- 0.005 HWWAnalysisCode 2012: WW(em,me) 0jet = 1.198 +/- 0.034 HWWAnalysisCode 2012: WW(em,me) 1jet = 1.081 +/- 0.049